A P element is a transposon that is present specifically in the fruit fly Drosophila melanogaster and is used widely for mutagenesis and the creation of genetically modified flies used for genetic research. The P element gives rise to a phenotype known as hybrid dysgenesis.
P elements were discovered in the 1970s when laboratory strains used since 1905 were compared to wild type flies. It seemed that these P elements had swept through all wild type populations of D. melanogaster subsequent to the isolation of the laboratory strains, which did not contain P elements.
The P element encodes for the protein P transposase and is flanked by terminal inverted repeats which are important for its mobility. Unlike laboratory strain females, wild type females are thought to express an inhibitor to P transposase function. This inhibitor reduces the disruption to the genome caused by the P elements, allowing fertile progeny. Evidence for this comes from crosses of laboratory females (which lack P transposase inhibitor) with wild type males (which have P elements). In the absence of the inhibitor, the P elements can proliferate throughout the genome, disrupting many genes and causing dead progeny.
Contents |
The P element is a class II transposon, which means that its movement within the genome is made possible by a transposase. The complete element is 2907 bp and is autonomous because it encodes a functional transposase; non-autonomous P elements which lack a functional transposase gene due to mutation also exist. Non-autonomous P elements can still move within the genome if there are autonomous elements to produce transposase. The P element can be identified by its terminal 31-bp inverted repeats, and the 8 bp direct repeat produced by its movement into and out of the DNA sequence.
A typical P-strain fly has 30-50 copies of the P element in its genome. However many of these copies contain internal deletions meaning that they do not encode the transposase. They therefore rely on other P elements to produce transposases in order for them to move.
Hybrid dysgenesis refers to the high rate of mutation in germ line cells of Drosophila strains resulting from a cross of males with autonomous P elements (P Strain/P cytotype) and females that lack P elements (M Strain/M cytotype). The hybrid dysgenesis syndrome is marked by temperature-dependent sterility, elevated mutation rates, and increased chromosome rearrangement and recombination.
The hybrid dysgenesis phenotype is effected by the transposition of P elements within the germ-line cells of offspring of P strain males with M strain females. Transposition only occurs in germ-line cells, because a splicing event needed to make transposase mRNA does not occur in somatic cells.
Hybrid dysgenesis manifests when crossing P strain males with M strain females and not when crossing P strain females (females with autonomous P elements) with M strain males. The eggs of P strain females contain high amounts of a repressor protein that prevents transcription of the transposase gene. The eggs of M strain mothers, which do not contain the repressor protein, allow for transposition of P elements from the sperm of fathers.
Actually this effect is rather contributed to piRNAs being inherited only in maternal line which allow defence mechanism against P-element(Brennecke, J. et al. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 322, 1387–1392 (2008).)
The P element has found wide use in Drosophila research as a mutagen. The mutagenesis system typically uses an autonomous but immobile element, and a mobile nonautonomous element. Flies from subsequent generations can then be screened by phenotype or PCR.
Naturally-occurring P elements contain:
Transposase is an enzyme that regulates and catalyzes the excision of a P element from the host DNA, cutting at two recognition sites, and then reinserts randomly. It is the random insertion that may interfere with existing genes, or carry an additional gene, that can be used for genetic research.
To use this as a useful and controllable genetic tool, the two parts of the P element must be separated to prevent uncontrolled transposition. The normal genetic tools are therefore:
P Plasmids always contain:
And may contain:
There are two main ways to utilise these tools:
The inserted gene may have damaged the function of one of the host's genes. Several lines of flies are required so comparison can take place and ensure that no additional genes have been knocked out.
Possible mutations:
The hijack of an enhancer from another gene allows the analysis of the function of that enhancer. This, especially if the reporter gene is for a fluorescent protein, can be used to help map expression of the mutated gene through the organism, and is a very powerful tool.
These methods are referred to as reverse genetics.
Once the function of the mutated protein has been determined it is possible to sequence/purify/clone the regions flanking the insertion by the following methods:
The process of cutting, self ligation and re cutting allows the amplification of the flanking regions of DNA without knowing the sequence. The point at which the ligation occurred can be seen by identifying the cut site of [enzyme 1].